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Bifurcation of heteroclinic cycle near 1:4 resonance in a self-excited parametrically forced oscil-
lator with quadratic nonlinearity is investigated analytically in this paper. This bifurcation
mechanism leads to the disappearance of a slow flow limit cycle giving rise to frequency-locking
near the resonance. The analytical approach used to approximate the bifurcation is based on
a collision criterion between the slow flow limit cycle and saddles involved in the bifurcation.
The amplitudes of the 1:4-subharmonic solution and the slow flow limit cycle are approximated
using a double perturbation procedure and the heteroclinic bifurcation is captured applying
the collision criterion. For validation, the analytical results are compared to those obtained by
numerical simulations.

Keywords : Heteroclinic connection; collision criterion; 1:4 resonance; frequency-locking; double
perturbation technique.

1. Introduction

Heteroclinic bifurcation in forced and self-excited
nonlinear oscillators occurs near q-subharmonic
resonances when pairs of saddles form connec-
tions resulting from the disappearance of a limit
cycle. All connections appear simultaneously due
to the Zq-symmetry. This bifurcation gives rise
to frequency-locking phenomenon between the
frequency of limit cycle and the frequency of
q-subharmonic response. Such a bifurcation mech-
anism usually occurs when the system exhibits
bistability in which two stable states coexist.

Heteroclinic connections near the 1:4 resonance
is a complicated bifurcation problem and only a
conjecture near this resonance is given; a rigorous
proof is still incomplete [Arnold, 1977]. In contrast,

this bifurcation near the other strong 1:q resonances
with q = 1, 2, 3 is well established [Arnold, 1977].
The problem of approximating heteroclinic bifur-
cation of cycles near 1:4 resonance is usually tack-
led by using numerical simulations. For instance,
[Berezovskaia & Khibnik, 1981] constructed 1:4 res-
onance heteroclinic bifurcation curves in the normal
form equation using numerical integration. Also,
heteroclinic bifurcations near the 1:4 resonance have
been analyzed numerically for a nonlinear paramet-
ric oscillator using the fourth-order Runge–Kutta
method [Belhaq et al., 1986; Belhaq, 1992a] or
applying continuation techniques [Krauskopf, 1995;
Takens, 2001] on the normal form equation [Arnold,
1977; Takens, 2001]. Recently, a detailed numerical
path-following and simulation was carried out to
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analyze bifurcation to heteroclinic cycles in three
and four coupled phase oscillators [Ashwin et al.,
2008].

While heteroclinic bifurcations for cycles have
been extensively studied numerically, analytical
treatment of these bifurcations, on the other hand,
are still unexplored. In a recent paper [Belhaq &
Fahsi, 2010], the so-called collision criterion was
used to approximate a heteroclinic bifurcation near
the 1:3 resonance in a self-excited nonlinear oscil-
lator subjected to external forcing. The analyt-
ical approximation was in accordance with the
result obtained by numerical integration. Motivated
by this finding, the present work aims at gaining
insight into the potential application of the col-
lision criterion to capture heteroclinic bifurcation
near 1:4 resonance. In this context, following a
similar strategy as in the 1:3 resonance case [Bel-
haq & Fahsi, 2010], we first approximate the ampli-
tudes of 1:4 subharmonic solution and the slow flow
limit cycle, and then we apply the collision cri-
terion between the two solutions. It is worthy to
notice that this criterion was successfully applied
to capture homoclinic and heteroclinic bifurcations
in two- and three-dimensional autonomous systems
[Belhaq et al., 1999; Belhaq et al., 2000; Belhaq &
Lakrad, 2000]. In particular, it was rigourously
shown that the collision criterion which is accessi-
ble via approximations of limit cycles is equivalent
to the Melnikov method aiming directly on the sep-
aratrices [Belhaq et al., 2000]. In other words, it
was concluded that the collision criterion coincides
with the Melnikov method when using the Jacobian
elliptic functions.

In the next section, we apply the Bogolioubov–
Mitropolsky technique [Bogolioubov & Mitropol-
sky, 1962] to approximate the amplitude–frequency
response near the 1:4 resonance. Then, the multiple
scales method [Nayfeh & Mook, 1979] is performed
on the slow flow to approximate the amplitude of
the limit cycle. In Sec. 3, the collision criterion
is implemented and approximation of the 1:4 het-
eroclinic connection is obtained. For validation, the
analytical finding is compared with the numerical
simulation using phase portraits. The last section
concludes the work.

2. 1:4 Subharmonic and Slow Flow
Limit Cycle

The system we consider that produces the het-
eroclinic connection in the 1:4 resonance is a

self-excited parametrically forced oscillator with a
quadratic nonlinearity given in the dimensionless
form as

ẍ+ ω2
0(1 + h cos ωt)x− (α− βx)ẋ− cx2 = 0,

(1)

where ω0 is the natural frequency, α, β are the
damping coefficients, c is the quadratic nonlinear
component and h, ω are, respectively, the ampli-
tude and frequency of the parametrical excitation.
Equation (1) is the classical nonlinear van der Pol–
Mathieu oscillator that can model various physical
and mechanical phenomena [Nayfeh & Mook, 1979].
The quadratic nonlinear component is useful for
testing perturbation methods and can also model
various phenomena in the physical and engineering
sciences [Mickens, 1996, 2004]. While saddle-node
bifurcation has been studied near the 1:4 resonance
for Eq. (1) [Belhaq, 1992b], the investigation of 1:4
heteroclinic bifurcation is still unexplored from an
analytical view point. It is worth noticing that two
possible 1:4 heteroclinic bifurcations exist. Namely,
a trifle heteroclinic connection formed around the
trivial equilibrium and a clover heteroclinic con-
nection surrounding both trivial and nontrivial
equilibria. All connections appear simultaneously
due to the Z4-symmetry.

An analytical method is performed here to
approximate the trifle heteroclinic bifurcation near
the 1:4 resonance. To do so, we analyze the dynamic
near this resonance by setting the resonance condi-
tion as

ω2
0 =

(
ω

4

)2

+ σ, (2)

where σ is a detuning parameter.
To analyze this case we need to order the lin-

ear damping and the detuning parameters so that
they appear at the second order in the perturba-
tion scheme; the other parameters are ordered at
the first order. In other words, we let

h = εh, β = εβ, c = εc,

α = ε2α, σ = ε2σ,
(3)

where ε is a small bookkeeping parameter. Substi-
tuting (2) and (3) into (1) yields

ẍ+
(
ω

4

)2

x = ε

{
cx2 − βxẋ− h

(
ω

4

)2

x cosωt

}

+ ε2{−σx+ αẋ} + ε3{−hσx cosωt}.
(4)
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Using the method of Bogolioubov–Mitropolsky
[Belhaq & Fahsi, 1997], we expand the solution
of (4) up to the third order as

x(t) = r cos
(
ω

4
t+ θ

)
+ εU1(r, θ, t)

+ ε2U2(r, θ, t) + ε3U3(r, θ, t), (5)

where the amplitude r and the phase θ are governed

by the slow flow system

dr

dt
= εA1(r, θ) + ε2A2(r, θ) + ε3A3(r, θ)

dθ

dt
= εB1(r, θ) + ε2B2(r, θ) + ε3B3(r, θ).

(6)

Introducing ψ = ω
4 t + θ, substituting (5) and (6)

into (4), expanding and equating coefficients of like
powers of ε, we obtain at different orders

• Order ε1:

∂2U1

∂t2
+
(
ω

4

)2

U1 = cr2 cos2 ψ + βr2
(
ω

4

)
cosψ sinψ − h

(
ω

4

)2

r cosψ cosωt

+
ω

2
A1 sinψ +

ω

2
rB1 cosψ. (7)

• Order ε2:

∂2U2

∂t2
+
(
ω

4

)2

U2 = −σr cosψ − αr

(
ω

4

)
sinψ +

(
2cr cosψ + βr

(
ω

4

)
sinψ − h

(
ω

4

)2

cosωt

)
U1

−βr cosψ
(
A1 cosψ − rB1 sinψ +

∂U1

∂t

)
+
(
ω

2
A2 + rA1

∂B1

∂r

+ rB1
∂B1

∂θ
+ 2A1B1

)
sinψ +

(
ω

2
rB2 + rB2

1 −A1
∂A1

∂r
−B1

∂A1

∂θ

)
cosψ. (8)

• Order ε3:

∂2U3

∂t2
+
(
ω

4

)2

U3 = −hσr cosψ cosωt− σU1 + α

(
A1 cosψ − rB1 sinψ +

∂U1

∂t

)

+

(
2cr cosψ + βr

(
ω

4

)
sinψ − h

(
ω

4

)2

cosωt

)
U2

−βr cosψ
(
A2 cosψ − rB2 sinψ +

∂U2

∂t
+A1

∂U1

∂r
+B1

∂U1

∂θ

)

+ cU2
1 − βU1

(
A1 cosψ − rB1 sinψ +

∂U1

∂t

)
− ∂U1

∂r

(
A1
∂A1

∂r
+B1

∂A1

∂θ

)

− ∂U1

∂θ

(
A1
∂B1

∂r
+B1

∂B1

∂θ

)
−A2

1

∂2U1

∂r2
−B2

1

∂2U1

∂θ2
− 2A1B1

∂2U1

∂r∂θ

− 2A1
∂2U2

∂r∂t
− 2B1

∂2U2

∂θ∂t
− 2A2

∂2U1

∂r∂t
− 2B2

∂2U1

∂θ∂t

+
(
ω

2
A3 + rA1

∂B2

∂r
+ rB1

∂B2

∂θ
+ rA2

∂B1

∂r
+ rB2

∂B1

∂θ
+ 2A1B2 + 2A2B1

)
sinψ

+
(
ω

2
rB2 + 2rB1B2 −A1

∂A2

∂r
−B1

∂A2

∂θ
−A2

∂A1

∂r
−B2

∂A1

∂θ

)
cosψ. (9)
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Removing secular terms in these equations and
solving them successively, we obtain at different
orders of approximations the quantities Ai(r, θ),
Bi(r, θ) and Ui(r, θ, t) with i = 1, 2, 3 which are
given in the Appendix.

Consequently, the solution up to the third order
of (4) is given by

x(t) = r cos
(
ω

4
t+ θ

)
+ U1(r, θ, t)

+U2(r, θ, t) + U3(r, θ, t) (10)

and the slow flow (6) now takes the form

dr

dt
= Ar −Br3 − (H1 sin 4θ +H2 cos 4θ)r3

dθ

dt
= S − Cr2 − (H1 cos 4θ −H2 sin 4θ)r2,

(11)

where A = α
2 , B = 2βc

ω2 , C = 80c2

3ω3 + β2

6ω , S = 2σ
ω + h2ω

192 ,

H1 = hβ2

72ω − 20hc2

9ω3 and H2 = hβc
9ω2 .

Nontrivial equilibria of this slow flow, corre-
sponding to 1:4 subharmonic solutions of Eq. (1),
are determined by setting dr

dt = dθ
dt = 0. This leads

to the amplitude–frequency response equation

A2r
4 +A1r

2 +A0 = 0, (12)

where A2 = B2+C2−H2
1−H2

2, A1 = −2(AB +SC )
and A0 = A2 + S2.

The phase-frequency response relation reads

tan 4θ =
(A−Br2)H1 − (S − Cr2)H2

(A−Br2)H2 + (S − Cr2)H1
. (13)

Figure 1 depicts the amplitude–frequency response,
as given by (12). The solid line denotes the ampli-
tude rf of stable 1:4 subharmonic solution of (1)
corresponding to the four stable equilibria of (11),
while the dashed line denotes the amplitude rs
of unstable 1:4 subharmonic solution of (1) corre-
sponding to the saddles of (11).

To test the validity of these analytical approxi-
mations, we perform numerical simulations by inte-
grating Eq. (1) using Runge–Kutta method. In
Fig. 2, the analytical approximation (10) (solid line)
is compared with the numerical result (dotted line)
and a good agreement is shown.

On the other hand, periodic motions of the
slow flow (11), corresponding to quasiperiodic solu-
tion of (1), can be approximated by performing the

3.4 3.45 3.5 3.55 3.6 3.65 3.7 3.75 3.8
0.3

0.35

0.4

0.45

0.5

ω

r rs

rf

Fig. 1. Amplitude–frequency response curves rf , rs near the
1:4 resonance. Solid line for stable and dashed line for unsta-
ble, ω0 = 1, α = 0.01, β = 0.2, c = 1, h = 0.2.

multiple scale method on the slow flow Cartesian
system corresponding to the polar form (11),
written as

du

dt
= Au+ Sv − (Bu+ Cv)(u2 + v2)

−H1v(v2 − 3u2) −H2u(u2 − 3v2)

dv

dt
= −Su+Av − (Bv − Cu)(u2 + v2)

+H1u(u2 − 3v2) −H2v(v2 − 3u2),

(14)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

dx
/d

t

ω=3.65

Fig. 2. Comparison between the analytical approxima-
tion (10) (solid line) and the numerical integration of (1)
(dashed line). Values of parameters are fixed as in Fig. 1.
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where u = r cos θ and v = −r sin θ. Following previ-
ous works [Belhaq & Fahsi, 2009; Belhaq & Houssni,
1999], a bookkeeping parameter µ is introduced in
damping and nonlinearity terms and parameters are
scaled in (14) as follows

du

dt
= Sv + µf(u, v),

dv

dt
= −Su+ µg(u, v),

(15)

where f(u, v) and g(u, v) are given by

f(u, v) = Au− (Bu+ Cv)(u2 + v2)

−H1v(v2 − 3u2) −H2u(u2 − 3v2),

g(u, v) = Av − (Bv − Cu)(u2 + v2)

+H1u(u2 − 3v2) −H2v(v2 − 3u2).

(16)

Using the multiple scales method, a solution up to
the second order of (15) is sought in the form

u(t) = u0(T0, T1, T2) + µu1(T0, T1, T2)

+ µ2u2(T0, T1, T2),

v(t) = v0(T0, T1, T2) + µv1(T0, T1, T2)

+ µ2v2(T0, T1, T2),

(17)

where Ti = µit (i = 0, 1, 2). Substituting (17) into
(15) and collecting terms, we get at different orders

• Order µ0: {
D2

0u0 + S2u0 = 0,

Sv0 = D0u0.
(18)

• Order µ1:

D2

0u1 + S2u1 = −2D0D1u0 +D0(f(u0, v0))

+ Sg(u0, v0),

Sv1 = D0u1 +D1u0 − f(u0, v0).
(19)

• Order µ2:


D2
0u2 + S2u2 = −2D0D2u0 −D0D1u1 − SD1v1 +D0

(
u1
∂f

∂u
(u0, v0) + v1

∂f

∂v
(u0, v0)

)

+S

(
u1
∂g

∂u
(u0, v0) + v1

∂g

∂v
(u0, v0)

)
,

Sv2 = D0u2 +D1u1 +D2u0 −
(
u1
∂f

∂u
(u0, v0) + v1

∂f

∂v
(u0, v0)

)
,

(20)

where Dj
i = ∂j

∂T j
i

. A solution to the first order of

system (18) is given by

u0(T0, T1) = R(T1) cos(ST0 + ϕ(T1)),

v0(T0, T1) = −R(T1) sin(ST0 + ϕ(T1)).
(21)

Substituting (21) into (19) and removing secular
terms, we obtain the following partial differential
system on R and ϕ

D1R = AR − BR3,

D1ϕ = −CR2.
(22)

The first-order approximate periodic solution of the
slow flow (15) reads

u(t) = R cos νt,

v(t) = −R sin νt,
(23)

where the amplitude R and the frequency ν
are obtained by setting dR

dt = 0 and given,

respectively, by

R =

√
A

B
, (24)

ν = S − CR2. (25)

At the second-order approximation, a particular
solution of system (19) is given by

u1(T0, T1, T2)

=
R3(T1, T2)

4S
(H1 cos(3ST0 + 3ϕ(T1, T2))

−H2 sin(3ST0 + 3ϕ(T1, T2))),

v1(T0, T1, T2)

=
R3(T1, T2)

4S
(H1 sin(3ST0 + 3ϕ(T1, T2))

+H2 cos(3ST0 + 3ϕ(T1, T2))).

(26)
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Substituting (21) and (26) into (20) and removing
secular terms gives the following partial differential
system on R and ϕ

D2R = 0,

D2ϕ = −3R4

4S
(
H2

1 +H2
2

)
.

(27)

Hence, the second-order approximate periodic solu-
tion of the slow flow (15) is given by

u(t) = R cos νt+
R3

4S
(H1 cos(3νt) −H2 sin(3νt)),

v(t) = −R sin νt+
R3

4S
(H1 sin(3νt) +H2 cos(3νt),

(28)

where R and ν are now given, respectively, by

R =

√
A

B
, (29)

ν = S − CR2 − 3R4

4S
(
H2

1 +H2
2

)
. (30)

Using (28), the modulated amplitude of quasiperi-
odic solutions of (1) is now approximated by

r(t) =

√
R2 +

R6

16S2

(
H2

1 +H2
2

)
+

2R4

4S
(H1 cos(4νt) −H2 sin(4νt)) (31)

and the envelope of this modulated amplitude is
delimited by rmin and rmax given by

rmin =

√
R2 +

R6

16S2

(
H2

1 +H2
2

)− 2R4

4S

√
H2

1 +H2
2,

(32)

rmax =

√
R2 +

R6

16S2

(
H2

1 +H2
2

)
+

2R4

4S

√
H2

1 +H2
2.

(33)

In Fig. 3, we plot the amplitude–frequency
response curves rs and rf as given by (12), as well as
the modulation domain of the amplitude of the slow

3.4 3.45 3.5 3.55 3.6 3.65 3.7 3.75 3.8
0.3

0.35

0.4

0.45

0.5

ω

r

rmin

rmax

rs

rf

Fig. 3. Amplitude–frequency response rf , rs and modula-
tion domain of the amplitude of slow flow limit cycle. Numeri-
cal simulation: double circles, analytical approximation: lines
rmin, rmax. Values of parameters are fixed as in Fig. 1.

flow limit cycle rmin and rmax (solid lines), as given
by (32) and (33). The comparison between these
analytical predictions (solid lines) and the numer-
ical simulations (double circles connected with a
vertical dashed line) indicates that, at the lead-
ing order, the analytical approximation captures
the modulation zone of the quasiperiodic response,
especially away from the frequency-locking domain.
The figure also indicates that when approaching
the small synchronization area numerically (approx-
imately 3.605 < ω < 3.689), the upper modulation
limit from the left or the lower modulation limit
from the right hits the unstable branch producing,
respectively, a trifle heteroclinic bifurcation or a
clover heteroclinic bifurcation.

3. Collision Criterion and
Heteroclinic Bifurcation

To approximate analytically the trifle heteroclinic
bifurcation near the 1:4 resonance, we apply the col-
lision criterion between the slow flow limit cycle and
the four saddles. In other words, at the bifurcation
the following condition

rmax = rs (34)

should be satisfied. Here, rmax is the upper modu-
lation limit of the amplitude of slow flow limit cycle
given by (33) and rs is the saddle stationary solu-
tion of the slow flow (11) given by (12).

Figure 4 shows the analytical prediction of the
trifle heteroclinic connection, plotted by the curve
labeled Ha, as given by the criterion (34). This

1250294-6
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3 3.5 4 4.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ω

h

SN
SN

Ha
Hn

Fig. 4. Bifurcation curves for the 1:4 subharmonic reso-
nance. SN: Saddle-node bifurcation curves, Ha: Analytical
trifle heteroclinic bifurcation, Hn: Numerical trifle hetero-
clinic bifurcation. Values of parameters are fixed as in Fig. 1.

analytical prediction is compared to the numerical
heteroclinic bifurcation curve, labeled Hn, obtained
by integrating the slow flow system (14) using the
Runge–Kutta method. The comparison shows a

good agreement. The analytical curves, labeled SN ,
obtained from (12) denote the saddle-node bifurca-
tion location delimiting the region where the 1:4
subharmonic cycles exist.

Figure 5 illustrates examples of phase portraits
of the slow flow (14) for some values of ω picked
from Fig. 3. For values of ω taken far from the reso-
nance, only a slow flow stable limit cycle exists and
attracts all initial conditions. A related phase por-
trait is shown in subfigures (a) and (i) for ω = 3.45
and ω = 3.75, respectively. The subfigures (c) and
(g) for ω = 3.55 and ω = 3.70, respectively, indi-
cate the coexistence of two stable states, namely,
a cycle of order 4 born by saddle-node bifurcation
and a limit cycle. As the forcing frequency varies,
the stable slow flow limit cycle approaches the sad-
dles and disappears via a trifle or a clover hetero-
clinic connection, as shown in subfigures (d) and (f)
for ω = 3.6048 and ω = 3.6894, respectively. This
mechanism gives rise to frequency-locking, in which
the response of the system follows the 1:4 subhar-
monic frequency (see subfigure (e) for ω = 3.65).

Note that the stable and unstable cycles
of order 4 appear or disappear via saddle-node

u 

v ω=3.45 

u 

v ω=3.4735 ω=3.55 

u 

v 

(a) (b) (c)

ω=3.6048 

u 

v ω=3.65 v 

u 

ω=3.6894 

u 

v 

(d) (e) (f)

Fig. 5. Examples of phase portraits of the slow flow at different frequencies picked from Fig. 3. (d) Trifle connection,
(f) clover connection, (b) and (h) saddle-node bifurcations. Values of parameters are fixed as in Fig. 1.
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ω=3.70 

u 

v

u 

v ω=3.7346 

u 

v ω=3.75 

(g) (h) (i)

Fig. 5. (Continued)

bifurcations, as shown in subfigures (b) and (h) for
ω = 3.4735 and ω = 3.7346, respectively.

We point out that this analytical study focused
only on the trifle heteroclinic bifurcation corre-
sponding to the case where the limit cycle disap-
pears leaving the stable cycles located outside the
trifle connection, as shown in Figs. 5(c)–5(e). The
other case where the heteroclinic bifurcation leaves
the stable cycles inside the clover connection (ω =
3.6894) is not considered here [see Figs. 5(e)–5(g)].
In fact, analytical treatment of this later bifurcation
requires the construction of an analytical expression
of the slow flow limit cycle surrounding all equilib-
ria, which is not easy to tackle.

4. Conclusions

We have studied analytically bifurcation to hetero-
clinic cycle near a 1:4 resonance in a self-excited
parametrically forced oscillator with a quadratic
nonlinearity. The analytical approach is based on
the collision criterion between the slow flow limit
cycle and the slow flow saddles involved in the bifur-
cation. We have focused our efforts on the investi-
gation of the trifle heteroclinic bifurcation in which
the limit cycle disappears from inside the connec-
tion [Figs. 5(c)–5(e)]. The results show that the
analytical approach was able to capture the trifle
heteroclinic bifurcation of the 1:4 resonance. The
comparison of the analytical finding to numerical
results show a good agreement indicating that the
collision criterion can effectively be exploited to
capture heteroclinic bifurcations near 1:4 resonance.
In contrast, analytical treatment of the clover het-
eroclinic bifurcation where the limit cycle disap-
pears from outside the connection [Figs. 5(e)–5(g)]
presents serious difficulties and requires additional

efforts in term of approximating the slow flow limit
cycle.

It is worthy to notice that combining the colli-
sion criterion with the Jacobian elliptic functions
(instead of the trigonometric ones used in the
present work) may give a more accurate analyti-
cal approximation of the 1:4 resonance heteroclinic
connection. Therefore, the principal challenge that
emerges from the present study is the prob-
lem of approximating analytically the slow flow
limit cycle near the heteroclinic bifurcations using
the Jacobian elliptic functions. Meeting this chal-
lenge may provide an efficient tool to analytically
explore bifurcation of heteroclinic cycles near strong
resonances.
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Lindstedt–Poincaré method,” Nonlin. Dyn. 23,
67–86.

Belhaq, M. & Lakrad, F. [2000] “Analytics of homo-
clinic bifurcations in three-dimensional systems,” Int.
J. Bifurcation and Chaos 12, 2479–2486.

Belhaq, M. & Fahsi, A. [2009] “Hysteresis suppression for
primary and subharmonic 3:1 resonances using fast
excitation,” Nonlin. Dyn. 57, 275–287.

Belhaq, M. & Fahsi, A. [2010] “Analytics of heteroclinic

bifurcation in a 3:1 subharmonic resonance,” Nonlin.
Dyn. 62, 1001–1008.

Berezovskaia, F. S. & Khibnik, A. I. [1981] “On the bifur-
cation of separatrices in the problem of stability loss of
auto-oscillations near 1:4 resonance,” PMM U.S.S.R.
44, 663–667.

Bogolioubov, M. & Mitropolsky, I. [1962] Les Méthodes
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Appendix

• Order ε1: {
A1(r, θ) = 0,

B1(r, θ) = 0,

U1(r, θ, t) =
8cr2

ω2
− 8cr2

3ω2
cos
(
ω

2
t+ 2θ

)
− 2βr2

3ω
sin
(
ω

2
t+ 2θ

)
+
hr

16
cos
(

3ω
4
t− θ

)
+
hr

48
cos
(

5ω
4
t+ θ

)
.

• Order ε2: 

A2(r, θ) =

α

2
r − 2βc

ω2
r3,

B2(r, θ) =
2σ
ω

+
h2ω

192
−
(

80c2

3ω3
+
β2

6ω

)
r2,

U2(r, θ, t) = −7hcr2

9ω2
cos
(
ω

2
t− 2θ

)
+
hβr2

36ω
sin
(
ω

2
t− 2θ

)
+
(

16c2

3ω4
− β2

2ω2

)
r3 cos

(
3ω
4
t+ 3θ

)

+
10βcr3

3ω3
sin
(

3ω
4
t+ 3θ

)
+

4hcr2

9ω2
cos(ωt) − 2hβr2

45ω
sin(ωt) − hcr2

21ω2
cos
(

3ω
2
t+ 2θ

)

− hβr2

60ω
sin
(

3ω
2
t+ 2θ

)
+

h2r

1536
cos
(

7ω
4
t− θ

)
+

h2r

7680
cos
(

9ω
4
t+ θ

)
.

• Order ε3: 

A3(r, θ) =

(
20hc2

9ω3
− hβ2

72ω

)
r3 sin 4θ − hβc

9ω2
r3 cos 4θ,

B3(r, θ) =
(

20hc2

9ω3
− hβ2

72ω

)
r2 cos 4θ +

hβc

9ω2
r2 sin 4θ.
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U3(r, θ, t) =
(

9728c3

9ω6
+

176β2c

9ω4

)
r4 −

(
3h2c

16ω2
+

128σc
ω4

+
4αβ
ω2

)
r2

−
((

15104c3

27ω6
+

80β2c

27ω4

)
r4 −

(
11h2c

3024ω2
+

128σc
3ω4

− 4αβ
9ω2

)
r2
)

cos
(
ω

2
t+ 2θ

)

−
((

2336βc2

27ω5
+

2β3

27ω3

)
r4 −

(
121h2β

8640ω
+

16βσ
3ω3

+
64αc
9ω3

)
r2
)

sin
(
ω

2
t+ 2θ

)

−
((

56hc2

9ω4
+

hβ2

30ω2

)
r3 −

(
25h3

24576
+

3hσ
2ω2

)
r

)
cos
(

3ω
4
t− θ

)
− 7βhcr3

90ω3
sin
(

3ω
4
t− θ

)

+
(

472β2c

135ω4
− 256c3

27ω6

)
r4 cos(ωt+ 4θ) +

(
52β3

135ω3
− 1376βc2

135ω5

)
r4 sin(ωt+ 4θ)

+
((

104hc2

189ω4
− hβ2

27ω2

)
r3 −

(
197h3

1105920
− 5hσ

18ω2

)
r

)
cos
(

5ω
4
t+ θ

)
− 61βhcr3

630ω3
sin
(

5ω
4
t+ θ

)

− 31h2cr2

2520ω2
cos
(

3ω
2
t− 2θ

)
− βh2r2

2016ω
sin
(

3ω
2
t− 2θ

)
+

3βhcr3

40ω3
sin
(

7ω
4
t+ 3θ

)

+
(

17hc2

189ω4
− 61hβ2

4320ω2

)
r3 cos

(
7ω
4
t+ 3θ

)
+

17h2cr2

5670ω2
cos(2ωt) − βh2r2

1134ω
sin(2ωt)

− 37h2cr2

124740ω2
cos
(

5ω
2
t+ 2θ

)
− βh2r2

6480ω
sin
(

5ω
2
t+ 2θ

)
+

h3r

368640
cos
(

11ω
4
t− θ

)

+
h3r

2580480
cos
(

13ω
4
t+ θ

)
.
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